Entering the era of mega-genomics Michael Schatz Simons Center for Quantitative Biology

Feb 7, 2010 Pioneer/Dupont Des Moines

Outline

- I. Milestones in genomics
- 2. 21st Century Mega-Genomics
 - I. Quantitative Traits and Measurements
 - 2. Parallel & Cloud Computing
- 3. Hadoop Applications for Genomics
 - I. Kmer counting
 - 2. Mapping & Jnomics
 - 3. Assembly & Contrail

Milestones in Genomics

14

Observations of 29,000 pea plants and 7 traits

				in Verhältniss			gestellt:	
Generation	A	Aa	a	A	:	Aa	:	a
1	1	2	1	1	:	2	:	1
2	6	4	6	3	:	2	:	3
3	28	8	28	7	:	2	:	7
4	120	16	120	15	:	2	:	15
5	496	32	496	31		2	÷	31
n				2"-1	:	2	:	2"-1

Se	Seed		Pod		Stem		
Form	Cotyledons	Color	Form	Color	Place	Size	
	\odot	9	1	1	搽	Ť	
Grey & Round	Yellow	White	Full	Yellow	Axial pods, Flowers alor	g Long (6-7ft	
-33		9	*	*	Ale	*	
White & Whinkled	Green	Violet	Constricted	Green	Terminal pod Flowers top	S.Short & -1ft	
1	2	3	.4	5	6	7	

http://en.wikipedia.org/wiki/Experiments_on_Plant_Hybridization

Versuche über Pflanzen-Hybriden. Verh. Naturforsch (Experiments in Plant Hybridization) Mendel, G. (1866). Ver. Brünn 4: 3–47 (in English in 1901, J. R. Hortic. Soc. 26: 1–32).

Milestones in Genomics

The origin and behavior of mutable loci in maize

McClintock, B (1950) Proceedings of the National Academy of Sciences. 36:344–55.

Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid Watson JD, Crick FH (1953). Nature 171:737–738.

Milestones in Genomics: Zeroth Generation Sequencing

Nature Vol. 265 February 24 1977	687	
articles		
Nucleotide sequence of b Φ X174 DNA	acteriophage	
F. Sanger, G. M. Air [*] , B. G. Barrell, N. L. Brow C. A. Hutchison III ⁺ , P. M. Slocombe ³ & M. Sm MRC Laboratory of Molecular Biology. Hills Read, Cambridge CB2	n', A. R. Coulson, J. C. Fiddes, ith' 2011, UK	
A DNA sequence for the genome of bacteriophage $\Phi X174$ of approximately 5,175 mathematics has been determined using the rapid and nimple "plus and robust" method. The sequence identifies many of the features responsible for the production of the protein of the nine known genes of the arguments, including initiation and termination sites for the proteins and RNAs. Two pairs of genes are coded by the same region of DNA using different reading frames.	strand DNA of ΦX has the same sequence as the mRNA and, in orrain conditions, will hind ribowrnes so that a protocold fragment can be isolated and sequenced. Only one major state was found by comparison with the armon acid sequence data is was found that this ribowene binding the sequence coded for the initiation of the gene <i>G</i> protein ⁴⁴ (position 2.362–2.413). At this stage sequencing techniques using primed synthesis with DNA polymerses were being developed ⁴⁴ and Schott synthesized a decanactoride with a sequence complementary to part of the ribosene binding site. This was used to given being robustionic region between the <i>I</i> and <i>G</i> genes, using DNA polymerses and ¹⁴⁹ alseled triphosphater). The <i>i</i> -bosebotta- tion technique ⁴⁴ facilitated the sequence determination of system was also used to develop the piss and mitus mithod'. Sustable synthetic primers are, however, difficult to prepare and an	
That genome of bacteriophage Φ X174 is a single-strended, circular DNA of approximately 6 Mos molecular, boding for mile known potents. The order of the molecular control of the generic technologies ¹¹ , is $A \cdot \delta = D \cdot E \cdot F \cdot G \cdot H$. Gener, $F \cdot G$ and H code for structured proteins of the view capied, and gene J las defined by sequence work's codes for a small basic protein		
19	77	
I st Complet	e Organism	
Bacteriopha	age $\phi X I 74$	
537	5 bp	

Radioactive Chain Termination 5000bp / week / person

http://en.wikipedia.org/wiki/File:Sequencing.jpg http://www.answers.com/topic/automated-sequencer

Nucleotide sequence of bacteriophage $\phi XI74$ DNA

Sanger, F. et al. (1977) Nature. 265: 687 - 695

Milestones in Genomics: First Generation Sequencing

1995 Fleischmann *et al.* Ist Free Living Organism TIGR Assembler. 1.8Mbp

2000 Myers *et al.* Ist Large WGS Assembly. Celera Assembler. 116 Mbp

200 I Venter *et al.* / IHGSC Human Genome Celera Assembler. 2.9 Gbp

ABI 3700: 500 bp reads x 768 samples / day = 384,000 bp / day. "The machine was so revolutionary that it could decode in a single day the same amount of genetic material that most DNA labs could produce in a year." J. Craig Venter

Milestones in Genomics: Second Generation Sequencing

2007 Illumina Sequencing by Synthesis Current Specs (HiSeq 2000): 2.5B 100bp reads / run = 60Gbp / day

2008 ABI / Life Technologies SOLiD Sequencing Current Specs (5500xl): 5B 75bp reads / run = 30Gbp / day

Milestones in Genomics: Third Generation Sequencing

2010

Ion Torrent Postlight Sequencing Current Specs (Ion 318): IIM 300bp reads / run = >IGbp / day 2011

Pacific Biosciences SMRT Sequencing Current Specs (RS): 50k 2kbp reads / run = >200Mbp / day

Milestones in Genomics

Sequencing Centers

Next Generation Genomics: World Map of High-throughput Sequencers

http://pathogenomics.bham.ac.uk/hts/

DNA Data Tsunami

Current world-wide sequencing capacity exceeds 13Pbp/year and is growing at 5x per year!

"Will Computers Crash Genomics?" Elizabeth Pennisi (2011) Science. 331(6018): 666-668.

Mega-Genomics Challenges

The foundations of genomics will continue to be observation, experimentation, and interpretation

- Technology will continue to push the frontier
- Measurements will be made *digitally* over large populations, at extremely high resolution, and for diverse applications

Rise in Quantitative Demands

- I. Experimental design: selection, collection, tracking & metadata
 - Ontologies, LIMS, sample databases
- 2. Observation: measurement, storage, transfer, computation
 - Algorithms to overcome sensor errors & limitations, computing at scale
- 3. Integration: multiple samples, multiple assays, multiple analyses
 - Reproducible workflows, common formats, resource federation
- 4. Discovery: visualizing, interpreting, modeling
 - Clustering, data reduction, trend analysis

Hadoop MapReduce

http://hadoop.apache.org

- MapReduce is Google's framework for large data computations
 - Data and computations are spread over thousands of computers
 - Indexing the Internet, PageRank, Machine Learning, etc... (Dean and Ghemawat, 2004)
 - 946PB processed in May 2010 (Jeff Dean at Stanford, 11.10.2010)
 - Hadoop is the leading open source implementation
 - Developed and used by Yahoo, Facebook, Twitter, Amazon, etc
 - GATK is an alternative implementation specifically for NGS
 - Benefits
 - Scalable, Efficient, Reliable
 - Easy to Program
 - Runs on commodity computers

- Challenges
 - Redesigning / Retooling applications
 - Not Condor, Not MPI
 - Everything in MapReduce

Hadoop for NGS Analysis

CloudBurst

Highly Sensitive Short Read Mapping with MapReduce

> 100x speedup mapping on 96 cores @ Amazon

http://cloudburst-bio.sf.net

(Schatz, 2009)

Myrna

Cloud-scale differential gene expression for RNA-seq

Expression of 1.1 billion RNA-Seq reads in ~2 hours for ~\$66

(Langmead, Hansen, Leek, 2010)

http://bowtie-bio.sf.net/myrna/

Quake

Quality-aware error correction of short reads

Correct 97.9% of errors with 99.9% accuracy

http://www.cbcb.umd.edu/software/quake/

(Kelley, Schatz, Salzberg, 2010)

Genome Indexing

Rapid Parallel Construction of Genome Index

Construct the BWT of the human genome in 9 minutes

\$GATTAC<u>A</u> A\$GATTA<u>C</u> ACA\$GAT<u>T</u> ATTACA\$<u>G</u> CA\$GATT<u>A</u> GATTACA<u>£</u> TACA\$GA<u>T</u> TTACA\$G<u>A</u>

(Menon, Bhat, Schatz, 2011*)

http://code.google.com/p/ genome-indexing/

System Architecture

- Hadoop Distributed File System (HDFS)
 - Data files partitioned into large chunks (64MB), replicated on multiple nodes
 - Computation moves to the data, rack-aware scheduling
- Hadoop MapReduce system won the 2009 GreySort Challenge
 - Sorted 100 TB in 173 min (578 GB/min) using 3452 nodes and 4x3452 disks

Amazon Web Services

http://aws.amazon.com

- All you need is a credit card, and you can immediately start using one of the largest datacenters in the world
- Elastic Compute Cloud (EC2)
 On demand computing power
- Simple Storage Service (S3)
 Scalable data storage
- Plus many, many more

Hadoop on AWS

- If you don't have 1000s of machines, rent them from Amazon
 - After machines spool up, ssh to master as if it was a local machine.
 - Use S3 for persistent data storage, with very fast interconnect to EC2.

Parallel Algorithm Spectrum

Embarrassingly Parallel

Map-only Each item is Independent

Loosely Coupled

MapReduce Independent-Sync-Independent

Tightly Coupled

Iterative MapReduce Constant Sync

I. Embarrassingly Parallel

- Batch computing
 - Each item is independent
 - Split input into many chunks
 - Process each chunk separately on a different computer
- Challenges
 - Distributing work, load balancing, monitoring & restart
- Technologies
 - Condor, Sun Grid Engine
 - Amazon Simple Queue

Elementary School Dance

2. Loosely Coupled

- Divide and conquer
 - Independently process many items
 - Group partial results
 - Scan partial results into final answer
- Challenges
 - Batch computing challenges
 - + Shuffling of huge datasets
- Technologies
 - Hadoop, Elastic MapReduce, Dryad
 - Parallel Databases

Junior High Dance

• Given a reference and many subject reads, report one or more "good" end-toend alignments per alignable read

Methyl-Seq

Hi-C-Seq

- Find where the read most likely originated
- Fundamental computation for many assays
 - Genotyping
 RNA-Seq
 - Structural Variations Chip-Seq
- Desperate need for scalable solutions
 - Single human requires >1,000 CPU hours / genome

http://bowtie-bio.sourceforge.net/crossbow

- Align billions of reads and find SNPs
 - Reuse software components: Hadoop Streaming
- Map: Bowtie (Langmead et al., 2009)
 - Find best alignment for each read
 - Emit (chromosome region, alignment)
- Shuffle: Hadoop
 - Group and sort alignments by region
- Reduce: SOAPsnp (Li et al., 2009)
 - Scan alignments for divergent columns
 - Accounts for sequencing error, known SNPs

Performance in Amazon EC2

http://bowtie-bio.sourceforge.net/crossbow

	Asian Individual Genome				
Data Loading	3.3 B reads	106.5 GB	\$10.65		
Data Transfer	lh :15m	40 cores	\$3.40		
Setup	0h : I 5m	320 cores	\$13.94		
Alignment	Ih : 30m	320 cores	\$41.82		
Variant Calling	I h : 00m	320 cores	\$27.88		
End-to-end	4h : 00m		\$97.69		

Discovered 3.7M SNPs in one human genome for ~\$100 in an afternoon. Accuracy validated at >99%

Searching for SNPs with Cloud Computing.

Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Genome Biology. 10:R134

Map-Shuffle-Scan for Genomics

Schatz, MC, Langmead B, Salzberg SL (2010) Nature Biotechnology. 28:691-693

Inomics: Cloud-scale genomics

Matt Titmus, James Gurtowski, Michael Schatz

- Rapid parallel execution of NGS analysis pipelines •
 - FASTX, BWA, Bowtie, Novoalign, SAMTools, Hydra
 - Sorting, merging, filtering, selection, of BAM, SAM, BED, fastq
 - Population analysis: Clustering, GWAS, Trait Inference

Answering the demands of digital genomics

Titmus, M.A., Schatz, M.C. (2011) Under Review

Jnomics Structural Variations

Sample Separation: 2kbp

Discordant Pair Analysis

 Identify clusters of pairs too close or too far away indicating a SV

Circos plot of high confidence SVs specific to esophageal cancer sample

- Red: SVs specific to tumor
- Green: SVs in both diseased and tumor samples

3. Tightly Coupled

- Computation that cannot be partitioned
 - Graph Analysis
 - Molecular Dynamics
 - Population simulations
- Challenges
 - Loosely coupled challenges
 - + Parallel algorithms design
- Technologies
 - MPI
 - MapReduce, Dryad, Pregel

High School Dance

Short Read Assembly

- Genome assembly as finding an Eulerian tour of the de Bruijn graph
 Human genome: >3B nodes, >10B edges
- The new short read assemblers require tremendous computation
 - Velvet (Zerbino & Birney, 2008) serial: > 2TB of RAM
 - ABySS (Simpson et al., 2009) MPI: 168 cores x ~96 hours
 - SOAPdenovo (Li et al., 2010) pthreads: 40 cores x 40 hours, >140 GB RAM

Graph Compression

- After construction, many edges are unambiguous
 - Merge together compressible nodes
 - Graph physically distributed over hundreds of computers

Design Patterns for Efficient Graph Algorithms in MapReduce. Lin, J., Schatz, M.C. (2010) Workshop on Mining and Learning with Graphs Workshop (KDD-2010)

Warmup Exercise

- Who here was born closest to Feb 7?
 - You can only compare to I other person at a time

Find winner among 64 teams in just 6 rounds

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H) (T) to each compressible node
- Compress (Ĥ)→T links

Initial Graph: 42 nodes

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H) / T to each compressible node
- Compress (Ĥ)→T links

Round 1: 26 nodes (38% savings)

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H)/ T to each compressible node
- Compress $(H) \rightarrow T$ links

Round 1: 26 nodes (38% savings)

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H)/ T to each compressible node
- Compress $(H) \rightarrow T$ links

Round 2: 15 nodes (64% savings)

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H) / T to each compressible node
- Compress $(H) \rightarrow T$ links

Round 2: 8 nodes (81% savings)

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H) / T to each compressible node
- Compress $(H) \rightarrow T$ links

Round 3: 6 nodes (86% savings)

Challenges

- Nodes stored on different computers
- Nodes can only access direct neighbors

Randomized List Ranking

- Randomly assign (H) / T to each compressible node
- Compress (Ĥ)→T links

Performance

- Compress all chains in log(S) rounds

Round 4: 5 nodes (88% savings)

Randomized Speed-ups in Parallel Computation.

Vishkin U. (1984) ACM Symposium on Theory of Computation. 230-239.

Node Types

0

Isolated nodes (10%)

Tips (46%)

Bubbles/Non-branch (9%)

Dead Ends (.2%)

Half Branch (25%)

Full Branch (10%)

(Chaisson, 2009)

Contrail

http://contrail-bio.sourceforge.net

De novo bacterial assembly

- Genome: E. coli K12 MG1655, 4.6Mbp
- Input: 20.8M 36bp reads, 200bp insert (~150x coverage)
- Preprocessor: Quake Error Correction

Assembly of Large Genomes with Cloud Computing.

Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

Contrail http://contrail-bio.sourceforge.net

De novo Assembly of the Human Genome

- Genome: African male NA18507 (SRA000271, Bentley et al., 2008)
- Input: 3.5B 36bp reads, 210bp insert (~40x coverage)

Assembly of Large Genomes with Cloud Computing.

Schatz MC, Sommer D, Kelley D, Pop M, et al. In Preparation.

Scalpel: Haplotype Microassembly

G. Narzisi, D. Levy, I. Iossifov, J. Kendall, M. Wigler, M. Schatz

- Use assembly techniques to identify complex variations from short reads
 - Improved power to find indels
 - Trace candidate haplotypes sequences as paths through assembly graphs

Ref:	CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCT	
Father:	•••CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCT	[cov:19.5]
Mother_1: Mother_2:	CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCT	[cov:19.4] [cov:21.5]
Aut_2: Aut_1:	CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCT	[cov:28.2] [cov:33.3]
Sib_1: Sib_2:	CACAGGATCCACCTTTCTCAAAGACCCAGGATCCTCCTTCCT	[cov:19.4] [cov:21.5]

24 bp heterozygous indel at chr5:176026122 GPRINI

Summary

I'm focused on the intersection of the most significant biology, biotechnology, and compute technology

Computational research is the key to unlocking the potential of "mega-genomics"

- Explosion in quantitative traits and measurements
- Parallel systems essential for analyzing large data sets
- Algorithms and machine learning to squeeze insight out of diverse data types
- Collaborations and visual informatics systems with biologists to help execute experiments & interpret results

Acknowledgements

Mitch Bekritsky Giuseppe Narzisi

Ivan Iossifov Wigler Lab

SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

Hayan Lee Matt Titmus James Gurtowski

Ware Lab McCombie Lab

Adam Phillippy (NBACC) Sergey Koren (NBACC)

DOE Systems Biology Knowledgebase

Paul Baranay (CSHL/ND)

Scott Emrich (ND) Steven Salzberg (JHU) Mihai Pop (UMD)

National Human Genome Research Institute

Thank You!

http://schatzlab.cshl.edu @mike_schatz

Sequencing & Assembly at 10:30a Genome-wide Analysis at 1:30p Break-out Discussions at 3:00p